
 Frosty for Twitch

1

Tommy Chow

Table of contents

1. About me
2. The Twitch ecosystem
3. What is Frosty?
4. Developing Frosty
5. Challenges
6. Release and marketing
7. Post-release
8. Results and metrics
9. Future plans

10. Questions

2

About me

3

Hello, I’m Tommy!
● Software engineer (frontend/web/mobile) currently based in NYC
● Attended University at Buffalo for CS, graduated in 2022
● Worked at Wildr (early-stage social media startup) in 2023
● Enjoys PC gaming, building mechanical keyboards, and loves dogs

4

The Twitch ecosystem

5

Twitch is a social live-streaming platform

6

A core feature of Twitch is
the live chat

7

Enhanced by community
third-party extensions

8

3 major web extensions with 7 million active users

9

2 problems with the
Twitch mobile app

10

No extensions on mobile,
so no third-party emotes

11

The channel interface is
cluttered and bloated

12

What is Frosty?

13

Frosty is a fully-featured
mobile client for Twitch

14

It brings quality-of-life
features and third-party
emote support

15

All while maintaining the
core features of Twitch

16

It’s also completely free and open-source

17

Browse followed
streams

Browse by top
categories

Search for channels
and categories

Feature highlights

18

Feature highlights
Watch live streams

with chat
See every third-party

emote
Better chatting with

autocomplete

19

Feature highlights

20

Lots of customizability

Feature highlights

21

 Available on Android too

Developing Frosty

22

Starting out with SwiftUI
● Relatively new and trendy, native performance and features
● Easy to prototype, uses a standardized MVVM pattern
● Had a honeymoon phase, but then problems began to show

23

Problems with SwiftUI

● Layouts views were not
complex enough, no flexbox or
HTML-like inline span

● Duplicate GIF emotes aren’t
synced

● Lack of documentation

24

Exploring other frameworks

React Native (Expo)

● Layouts are better (flex and inline span)
● Duplicate GIFs are not synced
● Early inconsistencies between iOS and

Android due to different native views

Flutter

● TextSpan and WidgetSpan widgets
● Duplicate GIFs are synced
● Uses a custom rendering engine

(Skia/Impeller) so visuals are identical
across platforms

25

Working with Flutter

Pros

- Easy to pick up, very similar to React
and JavaScript/TypeScript

- Official and community documentation
- Large standard widget library with good

defaults and styles

Cons

- Earlier Skia engine caused noticeable
jank (fixed recently with Impeller)

- Uncanny valley with “fake” views
- Nesting can get pretty messy

26

Frosty architecture
overview

27

Separation of concerns with MVVM pattern

28

29

30

31

32

33

34

35

36

Challenges

37

Recreating the Twitch chat

● Many intricacies with websockets
and Internet Relay Chat (IRC) spec

● Making chat performant and able to
withstand thousands of messages

● Lazy and batched rendering methods

38

@badge-info=;badges=premium/1;client-nonce=1a949a3826461765fbe
c17b9a414f0c4;color=#19B3A8;display-name=Test;emotes=;first-ms
g=0;flags=;id=f1050ef3-0d89-472a-a572-e3bfef81771e;mod=0;retur
ning-chatter=0;room-id=94753024;subscriber=0;tmi-sent-ts=17058
80990173;turbo=0;user-id=12345678;user-type=
:test!test@test.tmi.twitch.tv PRIVMSG #xqc :this is test EMOTE
message EMOTE hello EMOTE EMOTE

Implementing the video
stream player

● Twitch doesn’t provide raw stream
URLs (.m3u8) in their public API

● Workaround was to use a web view
with the web player embedded

● Custom Flutter overlay with
JavaScript to control the web player

39

CI/CD with GitHub Actions
and Fastlane

● Building and uploading to both stores
for every release was tedious

● Made a deploy script that automates
everything on a version tag push

● Took ~3 days to figure out but saved
countless hours

40

Project management

● A variety of tasks but not sure where
to start

● Used GitHub Projects and Kanban to
get an organized overview

● Helps prioritize stories and tasks

41

Release and marketing

42

Releasing on the app stores

● iOS TestFlight to ~100 Reddit users
● Play Store was easy, but App Store

was surprisingly tedious
● Eventually published on Feb. 2022

43

44

Marketing website built with Next.js

45

“Guerilla” marketing on Reddit and Discord

46

Post-release

47

Post-release

● Maintaining the app with updates
● Addressing user feedback and

feature requests
● Debugging bugs and crashes, API

deprecations and more
● Contributor PR reviews

48

Results and metrics

49

350,000+ downloads

50

50,000+ monthly active users

51

2,500+ reviews and 4.5+ star rating

52

15,000+ monthly website visitors

53

500+ stars, 1,000+ commits, and 31 releases (4 major)

54

Global audience

55

Future plans

56

Future plans

● UI/UX/design tweaks
● Moderation tools
● Better globalization
● Ultimately limited by Twitch API

57

Questions

58

