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About me
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Hello, I’m Tommy!
● Software engineer (frontend/web/mobile) currently based in NYC
● Attended University at Buffalo for CS, graduated in 2022
● Worked at Wildr (early-stage social media startup) in 2023
● Enjoys PC gaming, building mechanical keyboards, and loves dogs
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The Twitch ecosystem
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Twitch is a social live-streaming platform
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A core feature of Twitch is 
the live chat
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Enhanced by community 
third-party extensions
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3 major web extensions with 7 million active users

9



2 problems with the
Twitch mobile app
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No extensions on mobile, 
so no third-party emotes
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The channel interface is 
cluttered and bloated
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What is Frosty?
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Frosty is a fully-featured 
mobile client for Twitch
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It brings quality-of-life 
features and third-party 
emote support
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All while maintaining the 
core features of Twitch
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It’s also completely free and open-source
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Browse followed 
streams

Browse by top 
categories

Search for channels 
and categories

Feature highlights
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Feature highlights
Watch live streams 

with chat
See every third-party 

emote
Better chatting with 

autocomplete
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Feature highlights
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Lots of customizability



Feature highlights

21

 Available on Android too



Developing Frosty
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Starting out with SwiftUI
● Relatively new and trendy, native performance and features
● Easy to prototype, uses a standardized MVVM pattern
● Had a honeymoon phase, but then problems began to show
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Problems with SwiftUI

● Layouts views were not 
complex enough, no flexbox or 
HTML-like inline span

● Duplicate GIF emotes aren’t 
synced

● Lack of documentation
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Exploring other frameworks

React Native (Expo)

● Layouts are better (flex and inline span)
● Duplicate GIFs are not synced
● Early inconsistencies between iOS and 

Android due to different native views

Flutter

● TextSpan and WidgetSpan widgets
● Duplicate GIFs are synced
● Uses a custom rendering engine 

(Skia/Impeller) so visuals are identical 
across platforms
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Working with Flutter

Pros

- Easy to pick up, very similar to React 
and JavaScript/TypeScript

- Official and community documentation
- Large standard widget library with good 

defaults and styles

Cons

- Earlier Skia engine caused noticeable 
jank (fixed recently with Impeller)

- Uncanny valley with “fake” views
- Nesting can get pretty messy
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Frosty architecture 
overview
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Separation of concerns with MVVM pattern
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Challenges
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Recreating the Twitch chat

● Many intricacies with websockets 
and Internet Relay Chat (IRC) spec

● Making chat performant and able to 
withstand thousands of messages

● Lazy and batched rendering methods
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@badge-info=;badges=premium/1;client-nonce=1a949a3826461765fbe
c17b9a414f0c4;color=#19B3A8;display-name=Test;emotes=;first-ms
g=0;flags=;id=f1050ef3-0d89-472a-a572-e3bfef81771e;mod=0;retur
ning-chatter=0;room-id=94753024;subscriber=0;tmi-sent-ts=17058
80990173;turbo=0;user-id=12345678;user-type= 
:test!test@test.tmi.twitch.tv PRIVMSG #xqc :this is test EMOTE 
message EMOTE hello EMOTE EMOTE



Implementing the video 
stream player

● Twitch doesn’t provide raw stream 
URLs (.m3u8) in their public API

● Workaround was to use a web view 
with the web player embedded

● Custom Flutter overlay with 
JavaScript to control the web player
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CI/CD with GitHub Actions 
and Fastlane

● Building and uploading to both stores 
for every release was tedious

● Made a deploy script that automates 
everything on a version tag push

● Took ~3 days to figure out but saved 
countless hours
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Project management

● A variety of tasks but not sure where 
to start

● Used GitHub Projects and Kanban to 
get an organized overview

● Helps prioritize stories and tasks
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Release and marketing
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Releasing on the app stores

● iOS TestFlight to ~100 Reddit users
● Play Store was easy, but App Store 

was surprisingly tedious
● Eventually published on Feb. 2022
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44

Marketing website built with Next.js
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“Guerilla” marketing on Reddit and Discord
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Post-release
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Post-release

● Maintaining the app with updates
● Addressing user feedback and 

feature requests
● Debugging bugs and crashes, API 

deprecations and more
● Contributor PR reviews
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Results and metrics
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350,000+ downloads
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50,000+ monthly active users
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2,500+ reviews and 4.5+ star rating
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15,000+ monthly website visitors
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500+ stars, 1,000+ commits, and 31 releases (4 major)
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Global audience
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Future plans
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Future plans

● UI/UX/design tweaks
● Moderation tools
● Better globalization
● Ultimately limited by Twitch API
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Questions
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